Правая система координат

Геодезические системы пространственных координат

правая система координат

Рассматриваются преобразования между пространственными координатными системами. Приводится пример программной реализации на языке Питон.

[править] Земной эллипсоид

Земным эллипсоидом называется эллипсоид вращения, поверхность которого по форме и размерам довольно близка к поверхности геоида.

Поверхность эллипсоида образуется вращением эллипса вокруг его малой оси, которая также является осью вращения эллипсоида.

Эллипс обычно определяется размером его большой полуоси a и сжатием f. Реже вместо сжатия задаётся размер малой полуоси b:

В теории и практике вычислений широко используются такие параметры, как полярный радиус кривизны поверхности c, первый эксцентриситет e и второй эксцентриситет e′:

Пример функции Питона, вычисляющей по a и f параметры b, c, e и e′:

def initSpher(a, f): b = a * (1. — f) c = a / (1. — f) e2 = f * (2. — f) e12 = e2 / (1. — e2) return (b, c, e2, e12)

[править] Системы координат

Рассмотрим следующие системы координат.

  1. Геоцентрические декартовы прямоугольные координаты:
    • начало координат находится в центре эллипсоида,
    • ось z расположена вдоль оси вращения эллипсоида и направлена в северный полюс,
    • ось x лежит в пересечении экватора и начального меридиана,
    • ось y лежит в пересечении экватора и меридиана с долготой L = 90°.
  2. Система геодезических координат: геодезическая широта B  угол между нормалью к поверхности эллипсоида и плоскостью экватора, геодезическая долгота L  угол между плоскостями данного и начального меридианов, геодезическая высота H  кратчайшее расстояние до поверхности эллипсоида.
  3. Топоцентрические декартовы прямоугольные координаты:
    • начало координат находится в некоторой точке Q₀ (B₀, L₀, H₀) над эллипсоидом,
    • ось z расположена вдоль нормали к поверхности эллипсоида и направлена вверх,
    • ось x расположена в плоскости меридиана и направлена на север,
    • ось y перпендикулярна к осям x и z и направлена на восток.

Помимо широкого использования в геодезических целях, каждая из представленных координатных систем находит важное применение в прикладных областях.

Геодезические координаты со времён седой древности используются в навигации и картографии. В картографии они являются основой построения проекций.

Геоцентрическая система координат необходима для вычисления спутниковых орбит и решения других орбитальных задач.

Проекции, используемые картографами различных стран, основаны на различных геодезических датумах, т.е. созданы на различных эллипсоидах с разными размерами, положением центров и ориентацией осей в пространстве. Самый простой и точный способ пересчёта координат, заданных в разных датумах, зиждется на преобразованиях между геодезическими и геоцентрическими системами. В общем случае схема пересчёта координат между двумя проекциями выполняется в пять этапов:

  1. координаты первой проекции — в геодезические координаты на первом эллипсоиде,
  2. геодезические координаты — в геоцентрические координаты первого датума,
  3. геоцентрические координаты первого датума — в геоцентрические координаты второго датума,
  4. геоцентрические координаты — в геодезические координаты на втором эллипсоиде,
  5. геодезические координаты — в координаты второй проекции.

Топоцентрическая система координат — естественная система для работы различных наземных объектов: ракетных стартовых комплексов, станций слежения за спутниками, станций ПВО и других измерительных комплексов. Естественно, собираемая информация в каждом случае преобразуется в общую систему координат, связанную с Землёй — геодезическую систему координат.

[править] Переход от геодезических координат к геоцентрическим

Это преобразование выполняется по следующим формулам:

Здесь N — так называемый радиус кривизны первого вертикала:

Реализация на Питоне:

def fromLatLong(lat, lon, h, a, f): b, c, e2, e12 = initSpher(a, f) cos_lat = math.cos(lat) n = c / math.sqrt(1. + e12 * cos_lat ** 2) p = (n + h) * cos_lat x = p * math.cos(lon) y = p * math.sin(lon) z = (n + h — e2 * n) * math.sin(lat) return (x, y, z)

[править] Переход от геоцентрических координат к геодезическим

Проще всего вычисляется долгота:

Сложнее с определением широты и высоты. Существует множество способов решения этой задачи. Воспользуемся итеративным методом Боуринга.

В начале находится предварительная оценка широты B:

Здесь r — геоцентрический радиус-вектор, p — расстояние от оси вращения эллипсоида:

Затем вычисляется параметр θ (приведённая широта) и получается уточнённое значение широты:

Действия по последним двум формулам предполагается повторять до сходимости к требуемой точности. Как правило, бывает достаточно одной итерации. В примере реализации метода Боуринга, приведённом ниже, запрограммировано две итерации.

В конце определяется высота:

Источник: http://gis-lab.info/qa/geodesic-coords.html

Глобальная и локальная системы координат в Старт-Проф

правая система координат

Смотрите также

Различные системы координат используются при выводе перемещений, внутренних усилий, нагрузок на опоры, деформаций компенсаторов.

Глобальная система координат

В Старт-Проф используется правая система координат. Система координат считается правой, если ось Y образуется поворотом оси X против часовой стрелки при взгляде с конца оси Z на угол 90 град. В принятой глобальной системе координат ось Z всегда направлена вверх. Сила тяжести действует по оси Z, но в противоположном направлении (рис. 1).

Все дополнительные нагрузки и воздействия (силы и перемещения) задаются в виде проекций на глобальные оси координат ОХ, ОY и ОZ, при этом положительными считаются направления, совпадающие с направлениями осей координат. Углы поворота и моменты считаются положительными, когда они направлены против часовой стрелки, если смотреть от конца оси, вокруг которой происходит поворот или действует момент.

Рис. 1. Глобальная (общая) система координат Старт-Проф и положительные направления сил, моментов, линейных перемещений и углов поворота

Локальная система координат («для штуцеров»)

Нагрузки на опоры, перемещения узлов, деформации компенсаторов и внутренние усилия могут быть представлены в локальной системе координат Xm, Ym, Zm, связанной с осями участка (рис. 2).

Локальная ось Xm всегда направлена вдоль оси участка трубопровода, ось Zm перпендикулярна оси участка трубопровода и лежит в вертикальной плоскости, причем угол между глобальной осью Z и локальной Zm меньше или равен 900 (рис. 1, а). Ось Ym перпендикулярна осям Zm и Xm, образуя с ними правую тройку. Если участок вертикальный, то ось Xm совпадает с осью Z, ось Ym – с осью X, Zm – с осью Y (рис. 1, б).

В локальной системе координат удобно анализировать нагрузки на штуцера аппаратов, т.к. обычно требуются нагрузки вдоль оси штуцера, и поперек оси штуцера, причем штуцер может быть расположен в пространстве произвольно, в том числе и вертикально.

Также в локальной системе координат удобно анализировать деформации компенсаторов, т.к. обычно требуется определить осевую деформацию, угловую и поперечную.

Рис. 2. Глобальная (общая) система координат (X, Y, Z) и локальная (местная) система координат, связанная с осью участка (Xm, Ym, Zm)

Локальная система координат креплений («для строителей»)

Направления осей выбираются следующим образом:

  • вдоль оси — вдоль проекции оси трассы на горизонтальную плоскость (Xmm)
  • поперек — поперек оси трассы в горизонтальной плоскости (Ymm)
  • вертикальная (Zmm)

Локальные оси координат трассы не совпадают с локальными осями координат участков, примыкающих к опоре! Оси трассы всегда лежат в горизонтальной плоскости, и в вертикальной плоскости. Другими словами, независимо от того, с каким уклоном идет трубопровод, локальная система координат трассы остается неизменной.

В локальной системе координат креплений («для строителей») удобно анализировать нагрузки на строительные конструкции, сваи и опоры линейных трубопроводов.

Трубопровод часто идет с уклоном, а нагрузки на опоры требуются строго горизонтальные и строго вертикальные, поэтому локальная система координат («для штуцеров») не подходит. Необходима нагрузка вдоль направления трассы, а не трубы.

То есть вдоль проекции оси трубы на горизонтальную плоскость, а также строго вертикальная нагрузка и нагрузка поперек оси трассы.

Источник: https://edu.truboprovod.ru/kbase/doc/start/WebHelp_ru/znaki.htm

Системы координат, применяемые в геодезии и топографии

правая система координат

Для решения большинства задач в прикладных науках необходимо знать местоположение объекта или точки, которое определяется с помощью применения одной из принятых систем координат. Кроме того, имеются системы высот, которые также определяют высотное местонахождение точки на поверхности Земли.

ЭТО ИНТЕРЕСНО:  Utm система координат

Что такое координаты

Координаты – числовые или буквенные значения, с помощью которых можно определить место, где расположена точка на местности. Как следствие, система координат – это совокупность однотипных значений, имеющих одинаковый принцип нахождения точки или объекта.

Нахождение местоположения точки требуется для решения многих практических задач. В такой науке, как геодезия, определение местонахождения точки в заданном пространстве – главная цель, на достижении которой строится вся последующая работа.

Большинство систем координат, как правило, определяют расположение точки на плоскости, ограниченной только двумя осями. Для того чтобы определить позицию точки в трехмерном пространстве, применяется также система высот. С ее помощью можно узнать точное местонахождение искомого объекта.

Кратко о системах координат, применяемых в геодезии

Системы координат определяют местоположение точки на территории земной поверхности, задавая ей три значения. Принципы их расчета различны для каждой координатной системы.

Основные пространственные системы координат, применяемые в геодезии:

  1. Геодезические.
  2. Географические.
  3. Полярные.
  4. Прямоугольные.
  5. Зональные координаты Гаусса-Крюгера.

Все системы имеют свою начальную точку отсчета, величины для местонахождения объекта и области применения.

Геодезические координаты

Основной фигурой, применяемой для отсчета геодезических координат, является земной эллипсоид.

Эллипсоид – трехмерная сжатая фигура, которая наилучшим образом представляет собой фигуру земного шара. Ввиду того что земной шар – математически неправильная фигура, вместо нее для определения геодезических координат используют именно эллипсоид. Это облегчает осуществление многих расчетов для определения положения тела на поверхности.

Геодезические координаты определяются тремя значениями: геодезической широтой, долготой и высотой.

  1. Геодезическая широта – это угол, начало которого лежит на плоскости экватора, а конец — у перпендикуляра, проведенного к искомой точке.
  2. Геодезическая долгота – это угол, который отсчитывают от нулевого меридиана до меридиана, на котором находится искомая точка.
  3. Геодезическая высота – величина нормали, проведенной к поверхности эллипсоида вращения Земли от данной точки.

Для решения высокоточных задач высшей геодезии необходимо различать геодезические и географические координаты. В системе, применяемой в инженерной геодезии, таких различий, ввиду небольшого пространства, охватываемого работами, как правило, не делают.

Для определения геодезических координат в качестве плоскости отсчета используют эллипсоид, а для определения географических – геоид. Геоид является математически неправильной фигурой, более приближенной к фактической фигуре Земли. За его уровненную поверхность принимают ту, что продолжена под уровнем моря в его спокойном состоянии.

Географическая система координат, применяемая в геодезии, описывает позицию точки в пространстве с указанием трех значений. Определение географической долготы совпадает с геодезической, так как точкой отсчета также будет нулевой меридиан, называемый Гринвичским. Он проходит через одноименную обсерваторию в городе Лондоне. Географическая широта определяется от экватора, проведенного на поверхности геоида.

Высота в системе местных координат, применяемой в геодезии, отсчитывается от уровня моря в его спокойном состоянии. На территории России и стран бывшего Союза отметкой, от которой производят определение высот, является Кронштадтский футшток. Он расположен на уровне Балтийского моря.

Полярные координаты

Полярная система координат, применяемая в геодезии, имеет другие нюансы произведения измерений. Она применяется на небольших участках местности для определения относительного местоположения точки. Началом отсчета может являться любой объект, отмеченный как исходный. Таким образом, с помощью полярных координат нельзя определить однозначное местонахождение точки на территории земного шара.

Полярные координаты определяются двумя величинами: углом и расстоянием. Угол отсчитывается от северного направления меридиана до заданной точки, определяя ее положение в пространстве. Но одного угла будет недостаточно, поэтому вводится радиус-вектор – расстояние от точки стояния до искомого объекта. С помощью этих двух параметров можно определить местоположение точки в местной системе.

Как правило, эта система координат используется для выполнения инженерных работ, проводимых на небольшом участке местности.

Прямоугольные координаты

Прямоугольная система координат, применяемая в геодезии, также используется на небольших участках местности. Главным элементом системы является координатная ось, от которой происходит отсчет. Координаты точки находятся как длина перпендикуляров, проведенных от осей абсцисс и ординат до искомой точки.

Северное направление оси Х и восточное оси У считаются положительными, а южное и западное – отрицательными. В зависимости от знаков и четвертей определяют нахождение точки в пространстве.

Координаты Гаусса-Крюгера

Координатная зональная система Гаусса-Крюгера схожа с прямоугольной. Различие в том, что она может применяться для всей территории земного шара, а не только для небольших участков.

Прямоугольные координаты зон Гаусса-Крюгера, по сути, являются проекцией земного шара на плоскость. Она возникла в практических целях для изображения больших участков Земли на бумаге. Искажения, возникающие при переносе, считаются незначительными.

Согласно этой системе, земной шар делится по долготе на шестиградусные зоны с осевым меридианом посередине. Экватор находится в центре по горизонтальной линии. В итоге насчитывается 60 таких зон.

Каждая из шестидесяти зон имеет собственную систему прямоугольных координат, отсчитываемую по оси ординат от осевого меридиана Х, а по оси абсцисс – от участка земного экватора У. Для однозначного определения местоположения на территории всего земного шара перед значениями Х и У ставят номер зоны.

Значения оси Х на территории России, как правило, являются положительными, в то время как значения У могут быть и отрицательными. Для того чтобы избежать знака минус в величинах оси абсцисс, осевой меридиан каждой зоны условно переносят на 500 метров на запад. Тогда все координаты становятся положительными.

Система координат была предложена Гауссом в качестве возможной и рассчитана математически Крюгером в середине двадцатого века. С тех пор она используется в геодезии в качестве одной из основных.

Система высот

Системы координат и высот, применяемые в геодезии, используются для точного определения положения точки на территории Земли. Абсолютные высоты отсчитываются от уровня моря или другой поверхности, принятой за исходную. Кроме того, имеются относительные высоты. Последние отсчитываются как превышение от искомой точки до любой другой. Их удобно применять для работы в местной системе координат с целью упрощения последующей обработки результатов.

Применение систем координат в геодезии

Помимо вышеперечисленных, имеются и другие системы координат, применяемые в геодезии. Каждая из них имеет свои преимущества и недостатки. Есть также свои области работы, для которых актуален тот или иной способ определения местоположения.

Именно цель работы определяет, какие системы координат, применяемые в геодезии, лучше использовать. Для работы на небольших территориях удобно использовать прямоугольную и полярную системы координат, а для решения масштабных задач необходимы системы, позволяющие охватить всю территорию земной поверхности.

Источник: https://FB.ru/article/352671/sistemyi-koordinat-primenyaemyie-v-geodezii-i-topografii

Система координат, виды и классификация

Пойдем прямым логическим путем, не отвлекаясь на многие современные международные и отечественные научные термины. Систему координат можно изобразить как некую систему отсчета ориентированную на плоскости двумя направлениями, а в пространстве тремя. Если вспомнить математическую систему, то она представлена двумя взаимно перпендикулярными направлениями, имеющими названия осей абсцисс (X) и ординат (Y).

Ориентированы они в горизонтальном и вертикальном направлениях соответственно. Пересечение этих линий является началом координат с нулевыми значениями в абсолютной величине. А местоположение точек на плоскости определяется при помощи двух координат X и Y. В геодезии ориентирование осей на плоскости отличается от математики.

Плоскостная прямоугольная система определена осью X в вертикальном положении (в направлении на север) и осью Y в горизонтальном (в направлении на восток). 

Классификация систем координат 

В геодезии все системы координат можно представить в виде двух групп:

  • прямолинейная прямоугольная
  • полярная

В обеих группах выделяют как плоские (двухмерные), так и пространственные (трехмерные) системы.

К прямолинейным прямоугольным системам относятся цилиндрическая проекция Гаусса-Крюгера, индивидуальные референцные и местные системы координат.

К полярным системам можно отнести географическую, астрономическую и геодезическую, геоцентрические и топоцентрические системы. 

ЭТО ИНТЕРЕСНО:  Как определить географические координаты

Географическая система координат

Замкнутая поверхность внешнего контура Земли представлена сфероидной геометрической формой. За основные направления ориентирования на ней можно принять дуги на поверхности шара. На упрощенно представленном уменьшенном макете нашей планеты в виде глобуса (фигура земли) можно зрительно увидеть принятые линии отсчета в виде Гринвичского меридиана и экваториальной линии.

В этом примере выражена общепринятая во всем мире именно пространственная система географических координат. В ней введены понятия долготы и широты. Имея градусные единицы измерения, они представляют угловую величину. Многим знакомы их определения.

Следует напомнить, что географическая долгота конкретной точки представляет угол между двумя плоскостями, проходящими через нулевой (Гринвичский) меридиан и меридиан в определяемой точке расположения.

Под географической широтой точки принят угол, образующийся между отвесной линией (или нормалью) к ней и плоскостью экватора. 

Понятия астрономической и геодезической системы координат и их различия 

Географическая система условно объединяет астрономическую и геодезическую системы. Для того чтобы было понятно какие все-таки существуют различия обратите внимание на определения геодезических и астрономических координат (долготы, широты, высоты). В астрономической системе широта рассматривается как угол между экваториальной плоскостью и отвесной линией в точке определения.

А сама форма Земли в ней рассматривается как условный геоид, математически приближенно приравненный к сфере. В геодезической системе широта образовывается нормалью к поверхности земного эллипсоида в конкретной точке и плоскостью экватора. Третьи координаты в этих системах дают окончательное представление в их различиях. Астрономическая (ортометрическая) высота представляет собой превышение по отвесной линии между фактической и точкой на поверхности уровенного геоида.

Геодезической высотой считается расстояние по нормали от поверхности эллипсоида до точки вычисления. 

Система плоских прямоугольных систем координат Гаусса-Крюгера 

Каждая система координат имеет свое теоретическое научное и практическое экономическое применение, как в глобальном, так и региональном масштабах. В некоторых конкретных случаях возможно использование референцных, местных  и условных систем координат, но которые через математические расчеты и вычисления все равно могут быть объединены между собой.

Геодезическая прямоугольная плоская система координат является проекцией отдельных шестиградусных зон эллипсоида. Вписав эту фигуру внутрь горизонтально расположенного цилиндра, каждая зона отдельно проецируется на внутреннюю цилиндрическую поверхность. Зоны такого сфероида ограничиваются меридианами с шагом в шесть градусов.

При развертывании на плоскости получается проекция, которая имеет название в честь немецких ученых её разработавших Гаусса-Крюгера. В таком способе проецирования углы между любыми направлениями сохраняют свои величины. Поэтому иногда ее называют еще равноугольной. Ось абсцисс в зоне проходит по центру, через условный осевой меридиан (ось X), а ось ординат по линии экватора (ось Y).

Длины линий вдоль осевого меридиана передается без искажений, а вдоль экваториальной линии с искажениями к краям зоны. 

Полярная система координат 

Кроме выше описанной прямоугольной системы координат следует отметить наличие и использование в решении геодезических задач плоской полярной системы координат. За исходное отсчетное направление в ней применяется ось северного (полярного) направления, откуда и название. Для определения местоположения точек на плоскости используют полярный (дирекционный) угол и радиус-вектор (горизонтальное проложение) до точки.

Напомним, что дирекционным углом считается угол, отсчитываемый от исходного (северного) направления до определяемого. Радиус-вектор выражается в определении горизонтального проложения. К пространственной полярной системе добавляется геодезические измерения вертикального угла и наклонного расстояния для определения 3D-положения точек.

Этот способ практически ежедневно применяется в тригонометрическом нивелировании, топографической съемке и для развития геодезических сетей. 

Геоцентрические и топоцентрические системы координат 

По такому же полярному методу частично устроены и спутниковые геоцентрическая и топоцентрическая системы координат, с той лишь разницей, что основные оси трехмерного пространства (X, Y, Z) имеют отличные начала и направления.

В геоцентрической системе началом координат является центр масс Земли. Ось X имеет направление по Гринвичскому меридиану к экватору. Ось Y располагают в прямоугольном положении на восток от X. Ось Z изначально имеет полярное направление по малой оси эллипсоида.

Координатами в ней считаются:

  • в экваториальной плоскости геоцентрическое прямое восхождение спутника
  • в меридианной плоскости геоцентрическое склонение спутника
  • геоцентрический радиус-вектор расстояние от центра тяжести Земли до спутника.

При наблюдении за движением спутников из точки стояния на земной поверхности используют топоцентрическую систему, оси координат которой расположены параллельно осям геоцентрической системы, а ее началом считается пункт наблюдения. Координаты в такой системе:

  • топоцентрическое прямое восхождение спутника
  • топоцентрическое склонение спутника
  • топоцентрический радиус-вектор спутника
  • геоцентрический радиус вектор в точке наблюдений.

В современные  спутниковые глобальные системы отсчета WGS-84, ПЗ-90 входят не только координаты, но и другие параметры и характеристики важные для геодезических измерений, наблюдений и навигации. К ним относятся геодезические и другие константы:

  • исходные геодезические даты
  • данные земного эллипсоида
  • модель геоида
  • модель гравитационного поля
  • значения величины гравитационной постоянной
  • значение скорости света и другие.

Источник: https://geostart.ru/post/22

Системы координат

Из этой статьи Вы узнаете способы определения пространства, какие бывают системы координат

Задание пространства

Для определения местоположения точки в пространстве можно использовать любую систему координат, в зависимости от задачи. Например, если Вы проектируете светильник в форме шара, то Вы воспользуетесь сферическими координатами, если в Вашей задаче необходимо описать движение по спирали — Вы выберите цилиндрические координаты. Итак, впереди часто используемые системы координат.

Декартова система координат x, y, z

Декартова или прямоугольная система координат. В декартовой системе координат положение точки определяется с помощью координат по каждой из осей, в двухмерной системе координат — это пара чисел (x,y), в трёхмерном пространстве — группа из трёх чисел (x,y,z). Координаты декартовой системы принадлежат множеству вещественных чисел, т.е. x,y и z — это любое вещественное число (-∞;+∞)

Полярная система координат ρ, θ

Полярная система координат — плоская система координат, в которой положение любой точки определяется с помощью расстояния r от центра системы координат и угла между радиус-вектором к оси x.

Полярная система координат используется когда расстояния между точками удобнее определять углом и расстоянием. Также полярная система координат используется для представления комплексных чисел.

В полярной системе координат r ≥ 0, угол φ ∈ [0;2π), одноко, для удобства, угол φ можно записать и как отрицательное значение и как значения большие 2π. Полярные координаты связаны с декартовыми следующими выражениями:

Перевод полярных координат в декартовы: x = r cosφ

y = r sinφ

Цилиндрические координаты r, φ, z

Цилиндрические координаты были введены для работы с цилиндрическими телами и поверхностями, цилиндрические координаты удобно использовать, например, для спирали, уравнения спирали в цилиндрической системе координат будет выглядеть значительно проще, нежели в декартовых координатах. В цилиндрических координатах плоскость XY определяется также, как и в полярных координатах: с помощью расстояния и угла между радиус-вектором и осью X, z-координата такая же, как и в декартовых координатах. Связь цилиндрических и декартовых координат:

Перевод цилиндрических координат в декартовы: x = r cosφ y = r sinφ

z = z

Сферические координаты ρ, φ, θ

Сферические координаты, как следует из названия, были введены для работы со сферическими телами, положение любой точки в сферических координатах определяется с помощью двух углов φ и θ и радиус-вектора ρ. Сферические координаты связаны с декартовыми координатами следующим образом:

Перевод сферических координат в декартовы: x = ρ sinφ cosθ y = ρ sinφ sinθ

z = ρ cosφ

Источник: https://k-tree.ru/articles/mathematics/sistemi_koordinat

Прямоугольная система координат на плоскости и в пространстве

При введении системы координат на плоскости или в трехмерном пространстве появляется уникальная возможность описания геометрических фигур и их свойств при помощи уравнений и неравенств. Это имеет иное название – методы алгебры.

Данная статья поможет разобраться с заданием прямоугольной декартовой системой координат и с определением координат точек. Более наглядное и подробное изображение имеется на графических иллюстрациях.

ЭТО ИНТЕРЕСНО:  Сколько спутников глонасс

Прямоугольная декартова система координат на плоскости

Чтобы ввести систему координат на плоскости, необходимо провести на плоскости две перпендикулярные прямые. Выбираем положительное направление, обозначая стрелочкой. Необходимо выбрать масштаб. Точку пересечения прямых назовем буквой O. Она считается началом отсчета. Это и называется прямоугольной системой координат на плоскости.

Прямые с началом O, имеющие направление и масштаб, называют координатной прямой или координатной осью.

Прямоугольная система координат обозначается Oxy. Координатными осями называют Ох и Оу, называемые соответственно ось абсцисс и ось ординат.

Изображение прямоугольной системы координат на плоскости.

Оси абсцисс и ординат имеют одинаковую единицу изменения и масштаб, что показано в виде штрихе в начале координатных осей. Стандартное направление Ох слева направо, а Oy – снизу вверх. Иногда используется альтернативный поворот под необходимым углом.

Прямоугольная система координат получила название декартовой в честь ее первооткрывателя Рене Декарта. Часто можно встретить название как прямоугольная декартовая система координат.

Прямоугольная система координат в трехмерном пространстве

Трехмерное евклидовое пространство имеет аналогичную систему, только оно состоит не из двух, а из трех Ох, Оу, Оz осей. Это три взаимно перпендикулярные прямые, где Оz имеет название ось аппликат.

По направлению координатных осей делят на правую и левую прямоугольные системы координат трехмерного пространства.

Оси координат пересекаются в точке O, называемой началом. Каждая ось имеет положительное направление, которое указывается при помощи стрелок на осях. Если при повороте Ох против часовой стрелки на 90° ее положительное направление совпадает с положительным Оу, тогда это применимо для положительного направления Оz. Такую систему считают правой. Иначе говоря, если сравнить направление Х с большим пальцем руки, то указательный отвечает за Y, а средний за Z.

Аналогично образуется левая система координат. Обе системы совместить невозможно, так как соответствующие оси не совпадут.

Координаты точки в декартовой системе координат на плоскости

Для начала отложим точку М на координатной оси Ох. Любое действительное число xM равняется единственной точке М, расположенной на данной прямой. Если точка расположена на координатной прямой на расстоянии 2 от начала отсчета по положительному направлению, то она равна 2 , если -3, то соответственное расстояние 3. Ноль – это начало отсчета координатных прямых.

Иначе говоря, каждая точка М, расположенная на Ox, равна действительному числу xM . Этим действительным числом и является ноль, если точка M расположена в начале координат, то есть на пересечении Ox и Оу. Число длины отрезка всегда положительно, если точка удалена в положительном направлении и наоборот.

Имеющееся число xM называют координатой точки М на заданной координатной прямой.

Возьмем точку как проекцию точки Mx на Ох, а как проекцию точки My на Оу. Значит, через точку М можно провести перпендикулярные осям Оx и Оу прямые, где послучим соответственные точки пересечения  Mx и My .

Тогда точка Mx на оси Ох имеет соответствующее число xM , а My на Оу — yM. На координатных осях это выглядит так:

Каждая точка M на заданной плоскости в прямоугольной декартовой системе координат имеет одну соответствующую пару чисел (xM, yM), называемую ее координатами. Абсцисса M – это xM , ордината M – это yM .

Обратное утверждение также считается верным: каждая упорядоченная пара (xM, yM) имеет соответствующую заданную в плоскости точку.

Координаты точки в прямоугольной системе координат в трехмерном пространстве

Определение точки М в трехмерном пространстве. Пусть имеются Mx, My, Mz,  являющиеся проекциями точки М на соответствующие оси Ох, Оу, Оz. Тогда значения этих точек на осях Ох, Оу, Оz примут значения xM, yM, zM. Изобразим это на координатных прямых.

Чтобы получить проекции точки M, необходимо добавить перпендикулярные прямые Ох, Оу, Оz продолжить и изобразит в виде плоскостей, которые проходят через M. Таким образом, плоскости пересекутся в Mx, My, Mz

Каждая точка трехмерного пространства имеет свои данные (xM, yM, zM) , которые имеют название координаты точки M, , xM, yM, zM- это числа, называемые абсциссой, ординатой и аппликатой заданной точки M. Для данного суждения верно и обратное утверждение: каждая упорядоченная тройка действительных чисел (xM, yM, zM) в заданной прямоугольной системе координат имеет одну соответствующую точку M трехмерного пространства.

Источник: https://Zaochnik.com/spravochnik/matematika/vektory/prjamougolnaja-sistema-koordinat-na-ploskosti-i-v/

Программный комплекс ЭРА. Версия 1.7: Руководство пользователя. Книга 1. Основные положения, нормативы, загрязняющие атмосферу объекты, страница 13

Поле ссылочного или словарного типаможет содержать только данные, привязанные к данным типа код.

Оникак бы «ссылаются» на таблицу, содержащую код и соответствующее емунаименование, но корректировка таких полей означает только выбор кода исоответствующего ему наименования из нормативных таблиц, нормативная таблицаостается при этом неизменной.

Например, во многих таблицах приводятся код инаименование загрязняющих веществ. Все они являются ссылочными, ссылаясь нанормативную таблицу загрязняющих веществ.

2.4.3. Различные системы координат

В ПК ЭРА поддерживается до трех систем координат (СК) одновременно.

Основная системакоординат. Считается, что это правосторонняя система координат, укоторой ось OY направлена на север, ось OX — на восток. Где начало основнойсистемы координат, не важно. Она введена для привязки городских СК к какой-тоединой СК. Основная СК может отличаться от городской, если вы будете проводитьрасчеты, учитывающие выбросы предприятий, расположенных в разных городах, илигородская СК не правосторонняя, или ось OY городской СКнаправлена не на север.

Городская система координат. Задаетсяпривязкой к основной СК при вводе нового города (смотрите раздел5.2 на стр. 31) параметрами:

— Абсцисса начала (X) и ординатаначала (Y) городскойСК по отношению к основной. Если «межгородских»расчетов производиться не будет (см. определение основной СК выше), то этипараметры должны остаться нулями.

—  Угол поворота (измеряется в угловых градусах) — угол между осью ОХгородской системы координат и направлением на север (отсчитывается от ОХпротив часовой стрелки). Значение по умолчанию 90.

ГородскаяСК также может быть только правосторонней.

Заводская система координат. Вы можете задатьсвою систему координат объекта (будем в дальнейшем называть ее заводскойсистемой координат). Все координаты источников загрязнения атмосферы вы должнызадавать именно в этой системе координат. Если координаты источников данногопредприятия записываются в городской СК (заводская СК совпадает с городской),все ниже описываемые параметры привязки должны равняться .

—  Абсциссаначала (X) и ордината начала (Y)определяют сдвиг заводской СК по оси X и Y поотношению к городской.

—  Угол поворота (измеряется в угловых градусах) — угол, образованныйположительными полуосями абсцисс (+ОХ) заводской и городскойсистем соответственно (отсчитывается от +ОХ городской системыпротив часовой стрелки).

—  Типсистемы координат: правосторонняя и левосторонняя. Правосторонней считается СК,которую с помощью поворота можно привести в состояние: положительные оси Y— вверх, X — направо, а левосторонняя — Y — вниз, X— направо.

Нарисунке дан пример с наличием несовпадающих всех трех систем координат, где(OXосн, OYосн) — основная СК, (OXгор, OYгор) — городская СК, (OXзв, OYзв) -заводская СК.

2.5.1. Таблицы

Таблица— самый распространенный тип представления информации в ПК ЭРА.

Пример таблицы, используемой в ПК ЭРА, приведен на рисунке.Опишем на этом примере основные компоненты таблиц и приемы работы с ними.

Структуратаблиц.

Таблица имеет название, которое высвечиваетсяв верхней части формы и состоит из какого-то числа строк истолбцов. Столбцы могут называться графамиили колонками таблицы. На пересечении строк и столбцовнаходятся поля таблицы.

Наименованияколонок таблицы расположены в ее первых строках и имеют цвет формы (в примере -серый).

В таблице всегда присутствует маркер, помечающийкакую-нибудь строку таблицы (). Строка вкоторой находится маркер называется текущей. Одно из полейтаблицы может быть выделено утолщенной рамкой или цветом фона — это текущееполе. В приведенном примере вторая строка является текущей, а в нейполе графы Кол является текущим полем.

Так как таблицы бывают довольно большими, они могут не вмещатьсяполностью на экране, как по вертикали, так и по горизонтали. Совокупностьвидимых на экране строк, размещаемых в таблице, будем называть страницей(в примере это всего 4 строки).

Источник: https://vunivere.ru/work18625/page13

Понравилась статья? Поделиться с друзьями:
Системы навигации и позиционирования
Настройка эхолота humminbird

Закрыть